Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 74
Filter
2.
mBio ; 13(4): e0194422, 2022 08 30.
Article in English | MEDLINE | ID: covidwho-1986333

ABSTRACT

The human upper respiratory tract, specifically the nasopharyngeal epithelium, is the entry portal and primary infection site of respiratory viruses. Productive infection of SARS-CoV-2 in the nasal epithelium constitutes the cellular basis of viral pathogenesis and transmissibility. Yet a robust and well-characterized in vitro model of the nasal epithelium remained elusive. Here we report an organoid culture system of the nasal epithelium. We derived nasal organoids from easily accessible nasal epithelial cells with a perfect establishment rate. The derived nasal organoids were consecutively passaged for over 6 months. We then established differentiation protocols to generate 3-dimensional differentiated nasal organoids and organoid monolayers of 2-dimensional format that faithfully simulate the nasal epithelium. Moreover, when differentiated under a slightly acidic pH, the nasal organoid monolayers represented the optimal correlate of the native nasal epithelium for modeling the high infectivity of SARS-CoV-2, superior to all existing organoid models. Notably, the differentiated nasal organoid monolayers accurately recapitulated higher infectivity and replicative fitness of the Omicron variant than the prior variants. SARS-CoV-2, especially the more transmissible Delta and Omicron variants, destroyed ciliated cells and disassembled tight junctions, thereby facilitating virus spread and transmission. In conclusion, we establish a robust organoid culture system of the human nasal epithelium for modeling upper respiratory infections and provide a physiologically-relevant model for assessing the infectivity of SARS-CoV-2 emerging variants. IMPORTANCE An in vitro model of the nasal epithelium is imperative for understanding cell biology and virus-host interaction in the human upper respiratory tract. Here we report an organoid culture system of the nasal epithelium. Nasal organoids were derived from readily accessible nasal epithelial cells with perfect efficiency and stably expanded for more than 6 months. The long-term expandable nasal organoids were induced maturation into differentiated nasal organoids that morphologically and functionally simulate the nasal epithelium. The differentiated nasal organoids adequately recapitulated the higher infectivity and replicative fitness of SARS-CoV-2 emerging variants than the ancestral strain and revealed viral pathogenesis such as ciliary damage and tight junction disruption. Overall, we established a human nasal organoid culture system that enables a highly efficient reconstruction and stable expansion of the human nasal epithelium in culture plates, thus providing a facile and robust tool in the toolbox of microbiologists.


Subject(s)
COVID-19 , Nasal Mucosa , Organoids , SARS-CoV-2 , COVID-19/virology , Humans , Nasal Mucosa/virology , Organoids/virology , SARS-CoV-2/classification , SARS-CoV-2/pathogenicity , SARS-CoV-2/physiology , Tissue Culture Techniques
3.
Nature ; 603(7902): 706-714, 2022 03.
Article in English | MEDLINE | ID: covidwho-1764186

ABSTRACT

The SARS-CoV-2 Omicron BA.1 variant emerged in 20211 and has multiple mutations in its spike protein2. Here we show that the spike protein of Omicron has a higher affinity for ACE2 compared with Delta, and a marked change in its antigenicity increases Omicron's evasion of therapeutic monoclonal and vaccine-elicited polyclonal neutralizing antibodies after two doses. mRNA vaccination as a third vaccine dose rescues and broadens neutralization. Importantly, the antiviral drugs remdesivir and molnupiravir retain efficacy against Omicron BA.1. Replication was similar for Omicron and Delta virus isolates in human nasal epithelial cultures. However, in lung cells and gut cells, Omicron demonstrated lower replication. Omicron spike protein was less efficiently cleaved compared with Delta. The differences in replication were mapped to the entry efficiency of the virus on the basis of spike-pseudotyped virus assays. The defect in entry of Omicron pseudotyped virus to specific cell types effectively correlated with higher cellular RNA expression of TMPRSS2, and deletion of TMPRSS2 affected Delta entry to a greater extent than Omicron. Furthermore, drug inhibitors targeting specific entry pathways3 demonstrated that the Omicron spike inefficiently uses the cellular protease TMPRSS2, which promotes cell entry through plasma membrane fusion, with greater dependency on cell entry through the endocytic pathway. Consistent with suboptimal S1/S2 cleavage and inability to use TMPRSS2, syncytium formation by the Omicron spike was substantially impaired compared with the Delta spike. The less efficient spike cleavage of Omicron at S1/S2 is associated with a shift in cellular tropism away from TMPRSS2-expressing cells, with implications for altered pathogenesis.


Subject(s)
COVID-19/pathology , COVID-19/virology , Membrane Fusion , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , Serine Endopeptidases/metabolism , Virus Internalization , Adult , Aged , Aged, 80 and over , Angiotensin-Converting Enzyme 2/metabolism , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , COVID-19 Vaccines/immunology , Cell Line , Cell Membrane/metabolism , Cell Membrane/virology , Chlorocebus aethiops , Convalescence , Female , Humans , Immune Sera/immunology , Intestines/pathology , Intestines/virology , Lung/pathology , Lung/virology , Male , Middle Aged , Mutation , Nasal Mucosa/pathology , Nasal Mucosa/virology , SARS-CoV-2/drug effects , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Tissue Culture Techniques , Virulence , Virus Replication
5.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Article in English | MEDLINE | ID: covidwho-1650946

ABSTRACT

The development of small-molecules targeting different components of SARS-CoV-2 is a key strategy to complement antibody-based treatments and vaccination campaigns in managing the COVID-19 pandemic. Here, we show that two thiol-based chemical probes that act as reducing agents, P2119 and P2165, inhibit infection by human coronaviruses, including SARS-CoV-2, and decrease the binding of spike glycoprotein to its receptor, the angiotensin-converting enzyme 2 (ACE2). Proteomics and reactive cysteine profiling link the antiviral activity to the reduction of key disulfides, specifically by disruption of the Cys379-Cys432 and Cys391-Cys525 pairs distal to the receptor binding motif in the receptor binding domain (RBD) of the spike glycoprotein. Computational analyses provide insight into conformation changes that occur when these disulfides break or form, consistent with an allosteric role, and indicate that P2119/P2165 target a conserved hydrophobic binding pocket in the RBD with the benzyl thiol-reducing moiety pointed directly toward Cys432. These collective findings establish the vulnerability of human coronaviruses to thiol-based chemical probes and lay the groundwork for developing compounds of this class, as a strategy to inhibit the SARS-CoV-2 infection by shifting the spike glycoprotein redox scaffold.


Subject(s)
Amino Alcohols/pharmacology , Angiotensin-Converting Enzyme 2/chemistry , Antiviral Agents/pharmacology , Phenyl Ethers/pharmacology , Receptors, Virus/chemistry , SARS-CoV-2/drug effects , Spike Glycoprotein, Coronavirus/chemistry , Sulfhydryl Compounds/pharmacology , Allosteric Regulation , Amino Alcohols/chemistry , Angiotensin-Converting Enzyme 2/antagonists & inhibitors , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Antiviral Agents/chemistry , Binding Sites , COVID-19/virology , Cell Line , Disulfides/antagonists & inhibitors , Disulfides/chemistry , Disulfides/metabolism , Dose-Response Relationship, Drug , Humans , Molecular Docking Simulation , Nasal Mucosa/drug effects , Nasal Mucosa/metabolism , Nasal Mucosa/virology , Oxidation-Reduction , Phenyl Ethers/chemistry , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Receptors, Virus/antagonists & inhibitors , Receptors, Virus/genetics , Receptors, Virus/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Sulfhydryl Compounds/chemistry , COVID-19 Drug Treatment
6.
Int J Mol Sci ; 23(2)2022 Jan 13.
Article in English | MEDLINE | ID: covidwho-1625839

ABSTRACT

The global urgency to uncover medical countermeasures to combat the COVID-19 pandemic caused by the severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) has revealed an unmet need for robust tissue culture models that faithfully recapitulate key features of human tissues and disease. Infection of the nose is considered the dominant initial site for SARS-CoV-2 infection and models that replicate this entry portal offer the greatest potential for examining and demonstrating the effectiveness of countermeasures designed to prevent or manage this highly communicable disease. Here, we test an air-liquid-interface (ALI) differentiated human nasal epithelium (HNE) culture system as a model of authentic SARS-CoV-2 infection. Progenitor cells (basal cells) were isolated from nasal turbinate brushings, expanded under conditionally reprogrammed cell (CRC) culture conditions and differentiated at ALI. Differentiated cells were inoculated with different SARS-CoV-2 clinical isolates. Infectious virus release into apical washes was determined by TCID50, while infected cells were visualized by immunofluorescence and confocal microscopy. We demonstrate robust, reproducible SARS-CoV-2 infection of ALI-HNE established from different donors. Viral entry and release occurred from the apical surface, and infection was primarily observed in ciliated cells. In contrast to the ancestral clinical isolate, the Delta variant caused considerable cell damage. Successful establishment of ALI-HNE is donor dependent. ALI-HNE recapitulate key features of human SARS-CoV-2 infection of the nose and can serve as a pre-clinical model without the need for invasive collection of human respiratory tissue samples.


Subject(s)
COVID-19/virology , Nasal Mucosa/cytology , Nasal Mucosa/virology , Tissue Culture Techniques/methods , Adolescent , Adult , Angiotensin-Converting Enzyme 2/metabolism , Cell Culture Techniques , Cell Differentiation , Epithelial Cells/cytology , Epithelial Cells/virology , Female , Humans , Male , Middle Aged , Models, Biological , SARS-CoV-2 , Virus Internalization
7.
Aging Cell ; 21(2): e13544, 2022 02.
Article in English | MEDLINE | ID: covidwho-1621824

ABSTRACT

Coronavirus disease 2019 (COVID-19) is especially severe in aged patients, defined as 65 years or older, for reasons that are currently unknown. To investigate the underlying basis for this vulnerability, we performed multimodal data analyses on immunity, inflammation, and COVID-19 incidence and severity as a function of age. Our analysis leveraged age-specific COVID-19 mortality and laboratory testing from a large COVID-19 registry, along with epidemiological data of ~3.4 million individuals, large-scale deep immune cell profiling data, and single-cell RNA-sequencing data from aged COVID-19 patients across diverse populations. We found that decreased lymphocyte count and elevated inflammatory markers (C-reactive protein, D-dimer, and neutrophil-lymphocyte ratio) are significantly associated with age-specific COVID-19 severities. We identified the reduced abundance of naïve CD8 T cells with decreased expression of antiviral defense genes (i.e., IFITM3 and TRIM22) in aged severe COVID-19 patients. Older individuals with severe COVID-19 displayed type I and II interferon deficiencies, which is correlated with SARS-CoV-2 viral load. Elevated expression of SARS-CoV-2 entry factors and reduced expression of antiviral defense genes (LY6E and IFNAR1) in the secretory cells are associated with critical COVID-19 in aged individuals. Mechanistically, we identified strong TGF-beta-mediated immune-epithelial cell interactions (i.e., secretory-non-resident macrophages) in aged individuals with critical COVID-19. Taken together, our findings point to immuno-inflammatory factors that could be targeted therapeutically to reduce morbidity and mortality in aged COVID-19 patients.


Subject(s)
Aging , COVID-19/immunology , COVID-19/physiopathology , Inflammation , Severity of Illness Index , Adolescent , Adult , Aged , CD8-Positive T-Lymphocytes/immunology , COVID-19/epidemiology , Cell Communication , Epithelial Cells/immunology , Female , Humans , Immune System , Interferons/metabolism , Leukocytes, Mononuclear/metabolism , Male , Middle Aged , Nasal Mucosa/virology , Odds Ratio , RNA-Seq , Registries , SARS-CoV-2 , Viral Load , Young Adult
8.
Nature ; 602(7896): 321-327, 2022 02.
Article in English | MEDLINE | ID: covidwho-1585831

ABSTRACT

It is not fully understood why COVID-19 is typically milder in children1-3. Here, to examine the differences between children and adults in their response to SARS-CoV-2 infection, we analysed paediatric and adult patients with COVID-19 as well as healthy control individuals (total n = 93) using single-cell multi-omic profiling of matched nasal, tracheal, bronchial and blood samples. In the airways of healthy paediatric individuals, we observed cells that were already in an interferon-activated state, which after SARS-CoV-2 infection was further induced especially in airway immune cells. We postulate that higher paediatric innate interferon responses restrict viral replication and disease progression. The systemic response in children was characterized by increases in naive lymphocytes and a depletion of natural killer cells, whereas, in adults, cytotoxic T cells and interferon-stimulated subpopulations were significantly increased. We provide evidence that dendritic cells initiate interferon signalling in early infection, and identify epithelial cell states associated with COVID-19 and age. Our matching nasal and blood data show a strong interferon response in the airways with the induction of systemic interferon-stimulated populations, which were substantially reduced in paediatric patients. Together, we provide several mechanisms that explain the milder clinical syndrome observed in children.


Subject(s)
COVID-19/blood , COVID-19/immunology , Dendritic Cells/immunology , Interferons/immunology , Killer Cells, Natural/immunology , SARS-CoV-2/immunology , T-Lymphocytes, Cytotoxic/immunology , Adult , Bronchi/immunology , Bronchi/virology , COVID-19/pathology , Chicago , Cohort Studies , Disease Progression , Epithelial Cells/cytology , Epithelial Cells/immunology , Epithelial Cells/virology , Female , Humans , Immunity, Innate , London , Male , Nasal Mucosa/immunology , Nasal Mucosa/virology , SARS-CoV-2/growth & development , Single-Cell Analysis , Trachea/virology , Young Adult
9.
ACS Appl Mater Interfaces ; 13(50): 60612-60624, 2021 Dec 22.
Article in English | MEDLINE | ID: covidwho-1569206

ABSTRACT

New analytical techniques that overcome major drawbacks of current routinely used viral infection diagnosis methods, i.e., the long analysis time and laboriousness of real-time reverse-transcription polymerase chain reaction (qRT-PCR) and the insufficient sensitivity of "antigen tests", are urgently needed in the context of SARS-CoV-2 and other highly contagious viruses. Here, we report on an antifouling terpolymer-brush biointerface that enables the rapid and sensitive detection of SARS-CoV-2 in untreated clinical samples. The developed biointerface carries a tailored composition of zwitterionic and non-ionic moieties and allows for the significant improvement of antifouling capabilities when postmodified with biorecognition elements and exposed to complex media. When deployed on a surface of piezoelectric sensor and postmodified with human-cell-expressed antibodies specific to the nucleocapsid (N) protein of SARS-CoV-2, it made possible the quantitative analysis of untreated samples by a direct detection assay format without the need of additional amplification steps. Natively occurring N-protein-vRNA complexes, usually disrupted during the sample pre-treatment steps, were detected in the untreated clinical samples. This biosensor design improved the bioassay sensitivity to a clinically relevant limit of detection of 1.3 × 104 PFU/mL within a detection time of only 20 min. The high specificity toward N-protein-vRNA complexes was validated both by mass spectrometry and qRT-PCR. The performance characteristics were confirmed by qRT-PCR through a comparative study using a set of clinical nasopharyngeal swab samples. We further demonstrate the extraordinary fouling resistance of this biointerface through exposure to other commonly used crude biological samples (including blood plasma, oropharyngeal, stool, and nasopharyngeal swabs), measured via both the surface plasmon resonance and piezoelectric measurements, which highlights the potential to serve as a generic platform for a wide range of biosensing applications.


Subject(s)
COVID-19 Testing , COVID-19/diagnosis , Coronavirus Nucleocapsid Proteins/chemistry , Nasal Mucosa/virology , Polymers/chemistry , RNA, Viral/metabolism , SARS-CoV-2 , Biofouling , Biological Assay , Biosensing Techniques , Humans , Ions , Limit of Detection , Mass Spectrometry , Nasopharynx/virology , Phosphoproteins/chemistry , Reproducibility of Results , Reverse Transcriptase Polymerase Chain Reaction , Sensitivity and Specificity , Specimen Handling
10.
Nat Commun ; 12(1): 7092, 2021 12 07.
Article in English | MEDLINE | ID: covidwho-1561304

ABSTRACT

The nasal epithelium is a plausible entry point for SARS-CoV-2, a site of pathogenesis and transmission, and may initiate the host response to SARS-CoV-2. Antiviral interferon (IFN) responses are critical to outcome of SARS-CoV-2. Yet little is known about the interaction between SARS-CoV-2 and innate immunity in this tissue. Here we apply single-cell RNA sequencing and proteomics to a primary cell model of human nasal epithelium differentiated at air-liquid interface. SARS-CoV-2 demonstrates widespread tropism for nasal epithelial cell types. The host response is dominated by type I and III IFNs and interferon-stimulated gene products. This response is notably delayed in onset relative to viral gene expression and compared to other respiratory viruses. Nevertheless, once established, the paracrine IFN response begins to impact on SARS-CoV-2 replication. When provided prior to infection, recombinant IFNß or IFNλ1 induces an efficient antiviral state that potently restricts SARS-CoV-2 viral replication, preserving epithelial barrier integrity. These data imply that the IFN-I/III response to SARS-CoV-2 initiates in the nasal airway and suggest nasal delivery of recombinant IFNs to be a potential chemoprophylactic strategy.


Subject(s)
Epithelial Cells/virology , Interferon Type I/immunology , Interferons/immunology , Nasal Mucosa/virology , SARS-CoV-2/physiology , Antiviral Agents/immunology , Antiviral Agents/pharmacology , COVID-19/immunology , COVID-19/virology , Cells, Cultured , Epithelial Cells/cytology , Epithelial Cells/immunology , Humans , Immunity, Innate , Kinetics , Nasal Mucosa/cytology , Nasal Mucosa/immunology , SARS-CoV-2/drug effects , Signal Transduction/drug effects , Viral Tropism , Virus Replication/drug effects , Interferon Lambda
11.
Am J Respir Cell Mol Biol ; 66(2): 206-222, 2022 02.
Article in English | MEDLINE | ID: covidwho-1501858

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has infected more than 180 million people since the onset of the pandemic. Despite similar viral load and infectivity rates between children and adults, children rarely develop severe illness. Differences in the host response to the virus at the primary infection site are among the mechanisms proposed to account for this disparity. Our objective was to investigate the host response to SARS-CoV-2 in the nasal mucosa in children and adults and compare it with the host response to respiratory syncytial virus (RSV) and influenza virus. We analyzed clinical outcomes and gene expression in the nasal mucosa of 36 children with SARS-CoV-2, 24 children with RSV, 9 children with influenza virus, 16 adults with SARS-CoV-2, and 7 healthy pediatric and 13 healthy adult controls. In both children and adults, infection with SARS-CoV-2 led to an IFN response in the nasal mucosa. The magnitude of the IFN response correlated with the abundance of viral reads, not the severity of illness, and was comparable between children and adults infected with SARS-CoV-2 and children with severe RSV infection. Expression of ACE2 and TMPRSS2 did not correlate with age or presence of viral infection. SARS-CoV-2-infected adults had increased expression of genes involved in neutrophil activation and T-cell receptor signaling pathways compared with SARS-CoV-2-infected children, despite similar severity of illness and viral reads. Age-related differences in the immune response to SARS-CoV-2 may place adults at increased risk of developing severe illness.


Subject(s)
Aging/immunology , COVID-19/immunology , Gene Expression Regulation/immunology , Immunity, Mucosal , Nasal Mucosa/immunology , SARS-CoV-2/immunology , Adolescent , Age Factors , Angiotensin-Converting Enzyme 2/immunology , Child , Child, Preschool , Female , Humans , Infant , Male , Nasal Mucosa/virology , Respiratory Syncytial Virus Infections/immunology , Respiratory Syncytial Viruses/immunology , Serine Endopeptidases/immunology
12.
Virol J ; 18(1): 149, 2021 07 18.
Article in English | MEDLINE | ID: covidwho-1496197

ABSTRACT

BACKGROUND: The novel coronavirus SARS-CoV-2 is the etiological agent of COVID-19. This virus has become one of the most dangerous in recent times with a very high rate of transmission. At present, several publications show the typical crown-shape of the novel coronavirus grown in cell cultures. However, an integral ultramicroscopy study done directly from clinical specimens has not been published. METHODS: Nasopharyngeal swabs were collected from 12 Cuban individuals, six asymptomatic and RT-PCR negative (negative control) and six others from a COVID-19 symptomatic and RT-PCR positive for SARS CoV-2. Samples were treated with an aldehyde solution and processed by scanning electron microscopy (SEM), confocal microscopy (CM) and, atomic force microscopy. Improvement and segmentation of coronavirus images were performed by a novel mathematical image enhancement algorithm. RESULTS: The images of the negative control sample showed the characteristic healthy microvilli morphology at the apical region of the nasal epithelial cells. As expected, they do not display virus-like structures. The images of the positive sample showed characteristic coronavirus-like particles and evident destruction of microvilli. In some regions, virions budding through the cell membrane were observed. Microvilli destruction could explain the anosmia reported by some patients. Virus-particles emerging from the cell-surface with a variable size ranging from 80 to 400 nm were observed by SEM. Viral antigen was identified in the apical cells zone by CM. CONCLUSIONS: The integral microscopy study showed that SARS-CoV-2 has a similar image to SARS-CoV. The application of several high-resolution microscopy techniques to nasopharyngeal samples awaits future use.


Subject(s)
COVID-19/pathology , Nasopharynx/ultrastructure , SARS-CoV-2/ultrastructure , Antigens, Viral/metabolism , COVID-19/diagnosis , COVID-19/virology , Epithelial Cells/ultrastructure , Epithelial Cells/virology , Humans , Image Enhancement , Microscopy , Microvilli/ultrastructure , Nasal Mucosa/ultrastructure , Nasal Mucosa/virology , Nasopharynx/virology , SARS-CoV-2/isolation & purification , Virion/ultrastructure
13.
EBioMedicine ; 71: 103546, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1363149

ABSTRACT

BACKGROUND: Respiratory virus infections are significant causes of morbidity and mortality, and may induce host metabolite alterations by infecting respiratory epithelial cells. We investigated the use of liquid chromatography quadrupole time-of-flight mass spectrometry (LC/Q-TOF) combined with machine learning for the diagnosis of influenza infection. METHODS: We analyzed nasopharyngeal swab samples by LC/Q-TOF to identify distinct metabolic signatures for diagnosis of acute illness. Machine learning models were performed for classification, followed by Shapley additive explanation (SHAP) analysis to analyze feature importance and for biomarker discovery. FINDINGS: A total of 236 samples were tested in the discovery phase by LC/Q-TOF, including 118 positive samples (40 influenza A 2009 H1N1, 39 influenza H3 and 39 influenza B) as well as 118 age and sex-matched negative controls with acute respiratory illness. Analysis showed an area under the receiver operating characteristic curve (AUC) of 1.00 (95% confidence interval [95% CI] 0.99, 1.00), sensitivity of 1.00 (95% CI 0.86, 1.00) and specificity of 0.96 (95% CI 0.81, 0.99). The metabolite most strongly associated with differential classification was pyroglutamic acid. Independent validation of a biomarker signature based on the top 20 differentiating ion features was performed in a prospective cohort of 96 symptomatic individuals including 48 positive samples (24 influenza A 2009 H1N1, 5 influenza H3 and 19 influenza B) and 48 negative samples. Testing performed using a clinically-applicable targeted approach, liquid chromatography triple quadrupole mass spectrometry, showed an AUC of 1.00 (95% CI 0.998, 1.00), sensitivity of 0.94 (95% CI 0.83, 0.98), and specificity of 1.00 (95% CI 0.93, 1.00). Limitations include lack of sample suitability assessment, and need to validate these findings in additional patient populations. INTERPRETATION: This metabolomic approach has potential for diagnostic applications in infectious diseases testing, including other respiratory viruses, and may eventually be adapted for point-of-care testing. FUNDING: None.


Subject(s)
Influenza, Human/diagnosis , Machine Learning , Metabolome , Molecular Diagnostic Techniques/methods , Adolescent , Adult , Child , Child, Preschool , Female , Gas Chromatography-Mass Spectrometry/methods , Humans , Influenza, Human/metabolism , Influenza, Human/virology , Male , Metabolomics/methods , Nasal Mucosa/metabolism , Nasal Mucosa/virology , Orthomyxoviridae/pathogenicity , Pyrrolidonecarboxylic Acid/analysis
14.
Nat Commun ; 12(1): 5621, 2021 09 23.
Article in English | MEDLINE | ID: covidwho-1437680

ABSTRACT

Although serological studies have shown that antibodies against SARS-CoV-2 play an important role in protection against (re)infection, the dynamics of mucosal antibodies during primary infection and their potential impact on viral load and the resolution of disease symptoms remain unclear. During the first pandemic wave, we assessed the longitudinal nasal antibody response in index cases with mild COVID-19 and their household contacts. Nasal and serum antibody responses were analysed for up to nine months. Higher nasal receptor binding domain and spike protein-specific antibody levels at study inclusion were associated with lower viral load. Older age was correlated with more frequent COVID-19 related symptoms. Receptor binding domain and spike protein-specific mucosal antibodies were associated with the resolution of systemic, but not respiratory symptoms. Finally, receptor binding domain and spike protein-specific mucosal antibodies remained elevated up to nine months after symptom onset.


Subject(s)
Antibodies, Neutralizing/analysis , Antibodies, Viral/analysis , COVID-19/diagnosis , Nasal Mucosa/metabolism , SARS-CoV-2/immunology , Adolescent , Adult , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/metabolism , Antibodies, Viral/immunology , Antibodies, Viral/metabolism , COVID-19/blood , COVID-19/immunology , COVID-19/virology , COVID-19 Serological Testing/statistics & numerical data , Child , Humans , Immunity, Mucosal , Longitudinal Studies , Male , Middle Aged , Nasal Mucosa/immunology , Nasal Mucosa/virology , Severity of Illness Index , Viral Load , Young Adult
16.
Viruses ; 13(9)2021 09 12.
Article in English | MEDLINE | ID: covidwho-1411086

ABSTRACT

Our therapeutic arsenal against viruses is very limited and the current pandemic of SARS-CoV-2 highlights the critical need for effective antivirals against emerging coronaviruses. Cellular assays allowing a precise quantification of viral replication in high-throughput experimental settings are essential to the screening of chemical libraries and the selection of best antiviral chemical structures. To develop a reporting system for SARS-CoV-2 infection, we generated cell lines expressing a firefly luciferase maintained in an inactive form by a consensus cleavage site for the viral protease 3CLPro of coronaviruses, so that the luminescent biosensor is turned on upon 3CLPro expression or SARS-CoV-2 infection. This cellular assay was used to screen a metabolism-oriented library of 492 compounds to identify metabolic vulnerabilities of coronaviruses for developing innovative therapeutic strategies. In agreement with recent reports, inhibitors of pyrimidine biosynthesis were found to prevent SARS-CoV-2 replication. Among the top hits, we also identified the NADPH oxidase (NOX) inhibitor Setanaxib. The anti-SARS-CoV-2 activity of Setanaxib was further confirmed using ACE2-expressing human pulmonary cells Beas2B as well as human primary nasal epithelial cells. Altogether, these results validate our cell-based functional assay and the interest of screening libraries of different origins to identify inhibitors of SARS-CoV-2 for drug repurposing or development.


Subject(s)
Antiviral Agents/isolation & purification , Biosensing Techniques/methods , Coronavirus 3C Proteases/metabolism , SARS-CoV-2/physiology , Virus Replication , Animals , Antiviral Agents/pharmacology , Cell Line , Chlorocebus aethiops , Drug Discovery , Drug Evaluation, Preclinical , Enzyme Activation , HEK293 Cells , Humans , Luciferases, Firefly/metabolism , Nasal Mucosa/virology , Pyrazolones/pharmacology , Pyridones/pharmacology , SARS-CoV-2/metabolism , Vero Cells , Virus Internalization/drug effects , Virus Replication/drug effects
17.
Viruses ; 12(10)2020 10 16.
Article in English | MEDLINE | ID: covidwho-1389518

ABSTRACT

To address the expression pattern of the SARS-CoV-2 receptor ACE2 and the viral priming protease TMPRSS2 in the respiratory tract, this study investigated RNA sequencing transcriptome profiling of samples of airway and oral mucosa. As shown, ACE2 has medium levels of expression in both small airway epithelium and masticatory mucosa, and high levels of expression in nasal epithelium. The expression of ACE2 is low in mucosal-associated invariant T (MAIT) cells and cannot be detected in alveolar macrophages. TMPRSS2 is highly expressed in small airway epithelium and nasal epithelium and has lower expression in masticatory mucosa. Our results provide the molecular basis that the nasal mucosa is the most susceptible locus in the respiratory tract for SARS-CoV-2 infection and consequently for subsequent droplet transmission and should be the focus for protection against SARS-CoV-2 infection.


Subject(s)
Betacoronavirus/physiology , Coronavirus Infections/genetics , Peptidyl-Dipeptidase A/biosynthesis , Pneumonia, Viral/genetics , Serine Endopeptidases/biosynthesis , Virus Internalization , Angiotensin-Converting Enzyme 2 , COVID-19 , Coronavirus Infections/metabolism , Coronavirus Infections/virology , Epithelium/metabolism , Epithelium/virology , Gene Expression , Gene Expression Profiling , Humans , Nasal Mucosa/metabolism , Nasal Mucosa/virology , Pandemics , Peptidyl-Dipeptidase A/genetics , Pneumonia, Viral/metabolism , Pneumonia, Viral/virology , Respiratory System/metabolism , Respiratory System/virology , SARS-CoV-2 , Serine Endopeptidases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL